加速环境:
- `Accelerate` version: 0.23.0
- Platform: Linux-5.4.119-1-tlinux4-0009.3-x86_64-with-glibc2.17
- Python version: 3.10.11
- Numpy version: 1.24.4
- PyTorch version (GPU?): 2.0.1+cu117 (True)
- PyTorch XPU available: False
- PyTorch NPU available: False
- System RAM: 1006.96 GB
- GPU type: A100-SXM4-40GB
- `Accelerate` default config:
- compute_environment: LOCAL_MACHINE
- distributed_type: MULTI_GPU
- mixed_precision: fp16
- use_cpu: False
- debug: False
- num_processes: 8
- machine_rank: 0
- num_machines: 1
- gpu_ids: all
- rdzv_backend: static
- same_network: True
- main_training_function: main
- downcast_bf16: no
- tpu_use_cluster: False
- tpu_use_sudo: False
- tpu_env: []
ds_报告:
DeepSpeed C++/CUDA extension op report
--------------------------------------------------
NOTE: Ops not installed will be just-in-time (JIT) compiled at
runtime if needed. Op compatibility means that your system
meet the required dependencies to JIT install the op.
--------------------------------------------------
JIT compiled ops requires ninja
ninja .................. [OKAY]
--------------------------------------------------
op name ................ installed .. compatible
--------------------------------------------------
[WARNING] async_io requires the dev libaio .so object and headers but these were not found.
[WARNING] async_io: please install the libaio-dev package with apt
[WARNING] If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
async_io ............... [NO] ....... [NO]
fused_adam ............. [NO] ....... [OKAY]
cpu_adam ............... [NO] ....... [OKAY]
cpu_adagrad ............ [NO] ....... [OKAY]
cpu_lion ............... [NO] ....... [OKAY]
[WARNING] Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
evoformer_attn ......... [NO] ....... [NO]
fused_lamb ............. [NO] ....... [OKAY]
fused_lion ............. [NO] ....... [OKAY]
quantizer .............. [NO] ....... [OKAY]
random_ltd ............. [NO] ....... [OKAY]
[WARNING] sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.0
[WARNING] using untested triton version (2.0.0), only 1.0.0 is known to be compatible
sparse_attn ............ [NO] ....... [NO]
spatial_inference ...... [NO] ....... [OKAY]
transformer ............ [NO] ....... [OKAY]
stochastic_transformer . [NO] ....... [OKAY]
transformer_inference .. [NO] ....... [OKAY]
--------------------------------------------------
DeepSpeed general environment info:
torch install path ............... ['/apdcephfs_teg_2/share_1367250/flemingxu/miniconda3/envs/py3.10/lib/python3.10/site-packages/torch']
torch version .................... 2.0.1+cu117
deepspeed install path ........... ['/apdcephfs_teg_2/share_1367250/flemingxu/miniconda3/envs/py3.10/lib/python3.10/site-packages/deepspeed']
deepspeed info ................... 0.11.1, unknown, unknown
torch cuda version ............... 11.7
torch hip version ................ None
nvcc version ..................... 11.7
deepspeed wheel compiled w. ...... torch 2.0, cuda 11.7
shared memory (/dev/shm) size .... 503.48 GB
我的训练论据是:
@dataclass
class PeftArguments(TrainingArguments):
use_peft: bool = field(default=True, metadata={"help": "Whether to use peft"})
target_modules: Optional[str] = field(default="all")
lora_rank: Optional[int] = field(default=8)
lora_dropout: Optional[float] = field(default=0.05)
lora_alpha: Optional[float] = field(default=32.0)
modules_to_save: Optional[str] = field(default=None)
peft_path: Optional[str] = field(default=None, metadata={"help": "The path to the peft model"})
qlora: bool = field(default=False, metadata={"help": "Whether to use qlora"})
load_in_kbits: Optional[int] = field(default=None, metadata={"help": "Kbits to train the model, value is 4, 8"})
model_max_length: int = field(
default=512,
metadata={"help": "Maximum sequence length. suggest value is 8192 * 4, 8192 * 2, 8192, 4096, 2048, 1024, 512"}
)