训练上7百万数据loss没有下降一直在3.x徘徊震荡怎么回事?
数据格式: {"prompt": "心率失常二度房室阻滞脑梗糖尿病心血管狭窄。遗传高血压,心脏病,糖尿病17年,2011年室上速手术后,2015年出现二度二型传导阻滞,2018 年脑梗。", "summary": "是否有症状?", "history": []} {"prompt": "现在有症状,每天有几次跳的跳的停一下,有时候一天有7—8次,10来次,有时候几天出现几次,不规律。", "summary": "有没有头晕,眼前发黑,乏力等症状。", "history": [["心率失常二度房室阻滞脑梗糖尿病心血管狭窄。遗传高血压,心脏病,糖尿病17年,2011年室上速手术后,2015年出现二度二型传导阻滞,2018 年脑梗。", "是否有症状?"]]} {"prompt": "心跳不规则以后有发力,偶尔有头晕,没有眼前发黑症状。", "summary": "可网上预约挂号,把当地检查资料带过来,再做动态心电图看看。", "history": [["心率失常二度房室阻滞脑梗糖尿病心血管狭窄。遗传高血压,心脏病,糖尿病17年,2011年室上速手术后,2015年出现二度二型传导阻滞,2018 年脑梗。", "是否有症状?"], ["现在有症状,每天有几次跳的跳的停一下,有时候一天有7—8次,10来次,有时候几天出现几次,不规律。", "有没有头晕,眼前发黑,乏力等症状。"]]} {"prompt": "最近出现症状比较频繁,所以在当地医院住院检查,想着还是北京心血管还是最权威的,想问问您这种情况怎么办。现在去北京用隔离吗?挂号是挂阜外医院心内科吗?", "summary": "北京现在住不了院,可以门诊查,我下周不出门诊,你可以门诊挂谁的号都可以,先开单子去检查,建议查心脏核素显像,和动态心电图。", "history": [["心率失常二度房室阻滞脑梗糖尿病心血管狭窄。遗传高血压,心脏病,糖尿病17年,2011年室上速手术后,2015年出现二度二型传导阻滞,2018 年脑梗。", "是否有症状?"], ["现在有症状,每天有几次跳的跳的停一下,有时候一天有7—8次,10来次,有时候几天出现几次,不规律。", "有没有头晕,眼前发黑,乏力等症状。"], ["心跳不规则以后有发力,偶尔有头晕,没有眼前发黑症状。", "可网上预约挂号,把当地检查资料带过来,再做动态心电图看看。"]]} {"prompt": "我能网上预约您的号吗?关键我们是张家口的,怕一到北京被隔离了,另外,您看我给你发过去的病历,动态心电图,CT片子严重吗?", "summary": "你的动态心电图是二度房室传导阻滞,冠脉CT不很清楚,但是也没有看到严重问题。", "history": [["心率失常二度房室阻滞脑梗糖尿病心血管狭窄。遗传高血压,心脏病,糖尿病17年,2011年室上速手术后,2015年出现二度二型传导阻滞,2018 年脑梗。", "是否有症状?"], ["现在有症状,每天有几次跳的跳的停一下,有时候一天有7—8次,10来次,有时候几天出现几次,不规律。", "有没有头晕,眼前发黑,乏力等症状。"], ["心跳不规则以后有发力,偶尔有头晕,没有眼前发黑症状。", "可网上预约挂号,把当地检查资料带过来,再做动态心电图看看。"], ["最近出现症状比较频繁,所以在当地医院住院检查,想着还是北京心血管还是最权威的,想问问您这种情况怎么办。现在去北京用隔离吗?挂号是挂阜外医院心内科吗?", "北京现在住不了院,可以门诊查,我下周不出门诊,你可以门诊挂谁的号都可以,先开单子去检查,建议查心脏核素显像,和动态心电图。"]]} {"prompt": "这边医院256心脏CT说是血管堵了60%,但是病人总出现心跳早博,有时会伴有胸闷的症状。", "summary": "60%不严重,心跳是有问题,需要多次查动态心电图看看是否严重。", "history": [["心率失常二度房室阻滞脑梗糖尿病心血管狭窄。遗传高血压,心脏病,糖尿病17年,2011年室上速手术后,2015年出现二度二型传导阻滞,2018 年脑梗。", "是否有症状?"], ["现在有症状,每天有几次跳的跳的停一下,有时候一天有7—8次,10来次,有时候几天出现几次,不规律。", "有没有头晕,眼前发黑,乏力等症状。"], ["心跳不规则以后有发力,偶尔有头晕,没有眼前发黑症状。", "可网上预约挂号,把当地检查资料带过来,再做动态心电图看看。"], ["最近出现症状比较频繁,所以在当地医院住院检查,想着还是北京心血管还是最权威的,想问问您这种情况怎么办。现在去北京用隔离吗?挂号是挂阜外医院心内科吗?", "北京现在住不了院,可以门诊查,我下周不出门诊,你可以门诊挂谁的号都可以,先开单子去检查,建议查心脏核素显像,和动态心电图。"], ["我能网上预约您的号吗?关键我们是张家口的,怕一到北京被隔离了,另外,您看我给你发过去的病历,动态心电图,CT片子严重吗?", "你的动态心电图是二度房室传导阻滞,冠脉CT不很清楚,但是也没有看到严重问题。"]]}
运行训练:
PRE_SEQ_LEN=128
LR=1e-2
CUDA_VISIBLE_DEVICES=0
python main.py --do_train --train_file chat/train.json --validation_file chat/dev.json --prompt_column prompt --response_column summary --history_column history --overwrite_cache --model_name_or_path THUDM/chatglm-6b --output_dir output --overwrite_output_dir --max_source_length 255 --max_target_length 2500 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --gradient_accumulation_steps 16 --predict_with_generate --max_steps 400 --logging_steps 10 --save_steps 30 --learning_rate $LR --pre_seq_len $PRE_SEQ_LEN --quantization_bit 4
05/12/2023 02:30:07 - WARNING - main - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: False
05/12/2023 02:30:07 - INFO - main - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
do_eval=False,
do_predict=False,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'fsdp_min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=16,
gradient_checkpointing=False,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=revision
is encouraged when loading a configuration with custom code to ensure no malicious code has been contributed in a newer revision.
[INFO|configuration_utils.py:666] 2023-05-12 02:32:53,491 >> loading configuration file THUDM/chatglm-6b/config.json
[INFO|configuration_utils.py:720] 2023-05-12 02:32:53,492 >> Model config ChatGLMConfig {
"_name_or_path": "THUDM/chatglm-6b",
"architectures": [
"ChatGLMModel"
],
"auto_map": {
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
},
"bos_token_id": 130004,
"eos_token_id": 130005,
"gmask_token_id": 130001,
"hidden_size": 4096,
"inner_hidden_size": 16384,
"layernorm_epsilon": 1e-05,
"mask_token_id": 130000,
"max_sequence_length": 2048,
"model_type": "chatglm",
"num_attention_heads": 32,
"num_layers": 28,
"pad_token_id": 3,
"position_encoding_2d": true,
"pre_seq_len": null,
"prefix_projection": false,
"quantization_bit": 0,
"torch_dtype": "float16",
"transformers_version": "4.27.1",
"use_cache": true,
"vocab_size": 130528
}
[WARNING|tokenization_auto.py:652] 2023-05-12 02:32:53,493 >> Explicitly passing a revision
is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.
[INFO|tokenization_utils_base.py:1800] 2023-05-12 02:32:53,580 >> loading file ice_text.model
[INFO|tokenization_utils_base.py:1800] 2023-05-12 02:32:53,580 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:1800] 2023-05-12 02:32:53,580 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:1800] 2023-05-12 02:32:53,581 >> loading file tokenizer_config.json
[WARNING|auto_factory.py:456] 2023-05-12 02:32:53,877 >> Explicitly passing a revision
is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision.
[INFO|modeling_utils.py:2400] 2023-05-12 02:32:54,010 >> loading weights file THUDM/chatglm-6b/pytorch_model.bin.index.json
[INFO|configuration_utils.py:575] 2023-05-12 02:32:54,011 >> Generate config GenerationConfig {
"_from_model_config": true,
"bos_token_id": 130004,
"eos_token_id": 130005,
"pad_token_id": 3,
"transformers_version": "4.27.1"
}
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:59<00:00, 7.43s/it] [INFO|modeling_utils.py:3032] 2023-05-12 02:33:54,963 >> All model checkpoint weights were used when initializing ChatGLMForConditionalGeneration.
[WARNING|modeling_utils.py:3034] 2023-05-12 02:33:54,980 >> Some weights of ChatGLMForConditionalGeneration were not initialized from the model checkpoint at THUDM/chatglm-6b and are newly initialized: ['transformer.prefix_encoder.embedding.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
[INFO|modeling_utils.py:2690] 2023-05-12 02:33:55,057 >> Generation config file not found, using a generation config created from the model config.
Quantized to 4 bit
Running tokenizer on train dataset: 0%|▍ | 9000/5321511 [01:02<10:10:42, 144.98 examples/s][WARNING|tokenization_utils_base.py:3561] 2023-05-12 02:37:21,058 >> Token indices sequence length is longer than the specified maximum sequence length for this model (2431 > 2048). Running this sequence through the model will result in indexing errors
input_ids [53, 6945, 5, 8, 42, 4, 64286, 12, 87904, 75004, 66500, 6, 98877, 79112, 63841, 65505, 93556, 64600, 64879, 66119, 6, 64152, 64310, 64553, 66431, 64605, 63848, 66119, 63823, 4, 67342, 12, 130001, 130004, 5, 64213, 87527, 6, 63873, 64925, 63881, 70738, 72373, 65219, 63823, 130005, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
inputs [Round 0]
问:强制性脊柱炎,晚上睡觉翻身时腰骶骨区域疼痛,其他身体任何部位均不疼痛。
答: 应该没有问题,但最好把图像上传看看。
labelids [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 130004, 5, 64213, 87527, 6, 63873, 64925, 63881, 70738, 72373, 65219, 63823, 130005, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100]
labels <image-100>no_deprecation_warning=True
to disable this warning
warnings.warn(
0%| | 0/400 [00:00<?, ?it/s]05/12/2023 13:42:53 - WARNING - transformers_modules.chatglm-6b.modeling_chatglm - use_cache=True
is incompatible with gradient checkpointing. Setting use_cache=False
...
{'loss': 5.523, 'learning_rate': 0.00975, 'epoch': 0.0}
{'loss': 4.1672, 'learning_rate': 0.0095, 'epoch': 0.0}
{'loss': 3.6686, 'learning_rate': 0.009250000000000001, 'epoch': 0.0}
8%|█████████████████████▍ | 30/400 [30:02<6:08:17, 59.72s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:457] 2023-05-12 14:12:55,131 >> Configuration saved in output/checkpoint-30/config.json
[INFO|configuration_utils.py:362] 2023-05-12 14:12:55,136 >> Configuration saved in output/checkpoint-30/generation_config.json
[INFO|modeling_utils.py:1762] 2023-05-12 14:12:55,429 >> Model weights saved in output/checkpoint-30/pytorch_model.bin
[INFO|tokenization_utils_base.py:2163] 2023-05-12 14:12:55,431 >> tokenizer config file saved in output/checkpoint-30/tokenizer_config.json
[INFO|tokenization_utils_base.py:2170] 2023-05-12 14:12:55,431 >> Special tokens file saved in output/checkpoint-30/special_tokens_map.json
{'loss': 3.5784, 'learning_rate': 0.009000000000000001, 'epoch': 0.0}
{'loss': 3.4801, 'learning_rate': 0.00875, 'epoch': 0.0}
{'loss': 3.7665, 'learning_rate': 0.0085, 'epoch': 0.0}
15%|██████████████████████████████████████████▍ | 60/400 [1:00:00<5:38:21, 59.71s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:457] 2023-05-12 14:42:52,341 >> Configuration saved in output/checkpoint-60/config.json
[INFO|configuration_utils.py:362] 2023-05-12 14:42:52,344 >> Configuration saved in output/checkpoint-60/generation_config.json
[INFO|modeling_utils.py:1762] 2023-05-12 14:42:52,454 >> Model weights saved in output/checkpoint-60/pytorch_model.bin
[INFO|tokenization_utils_base.py:2163] 2023-05-12 14:42:52,455 >> tokenizer config file saved in output/checkpoint-60/tokenizer_config.json
[INFO|tokenization_utils_base.py:2170] 2023-05-12 14:42:52,455 >> Special tokens file saved in output/checkpoint-60/special_tokens_map.json
{'loss': 3.4308, 'learning_rate': 0.00825, 'epoch': 0.0}
{'loss': 3.412, 'learning_rate': 0.008, 'epoch': 0.0}
{'loss': 3.5149, 'learning_rate': 0.007750000000000001, 'epoch': 0.0}
22%|███████████████████████████████████████████████████████████████▋ | 90/400 [1:29:59<5:08:28, 59.71s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:457] 2023-05-12 15:12:51,419 >> Configuration saved in output/checkpoint-90/config.json
[INFO|configuration_utils.py:362] 2023-05-12 15:12:51,422 >> Configuration saved in output/checkpoint-90/generation_config.json
[INFO|modeling_utils.py:1762] 2023-05-12 15:12:51,530 >> Model weights saved in output/checkpoint-90/pytorch_model.bin
[INFO|tokenization_utils_base.py:2163] 2023-05-12 15:12:51,532 >> tokenizer config file saved in output/checkpoint-90/tokenizer_config.json
[INFO|tokenization_utils_base.py:2170] 2023-05-12 15:12:51,532 >> Special tokens file saved in output/checkpoint-90/special_tokens_map.json
{'loss': 3.763, 'learning_rate': 0.0075, 'epoch': 0.0}
{'loss': 3.5365, 'learning_rate': 0.0072499999999999995, 'epoch': 0.0}
{'loss': 3.5289, 'learning_rate': 0.006999999999999999, 'epoch': 0.0}
30%|████████████████████████████████████████████████████████████████████████████████████▌ | 120/400 [1:59:51<4:38:38, 59.71s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:457] 2023-05-12 15:42:43,383 >> Configuration saved in output/checkpoint-120/config.json
[INFO|configuration_utils.py:362] 2023-05-12 15:42:43,386 >> Configuration saved in output/checkpoint-120/generation_config.json
[INFO|modeling_utils.py:1762] 2023-05-12 15:42:43,494 >> Model weights saved in output/checkpoint-120/pytorch_model.bin
[INFO|tokenization_utils_base.py:2163] 2023-05-12 15:42:43,495 >> tokenizer config file saved in output/checkpoint-120/tokenizer_config.json
[INFO|tokenization_utils_base.py:2170] 2023-05-12 15:42:43,495 >> Special tokens file saved in output/checkpoint-120/special_tokens_map.json
{'loss': 3.306, 'learning_rate': 0.006750000000000001, 'epoch': 0.0}
{'loss': 3.4882, 'learning_rate': 0.006500000000000001, 'epoch': 0.0}
{'loss': 3.5012, 'learning_rate': 0.00625, 'epoch': 0.0}
38%|█████████████████████████████████████████████████████████████████████████████████████████████████████████▊ | 150/400 [2:29:46<4:08:40, 59.68s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:457] 2023-05-12 16:12:38,227 >> Configuration saved in output/checkpoint-150/config.json
[INFO|configuration_utils.py:362] 2023-05-12 16:12:38,230 >> Configuration saved in output/checkpoint-150/generation_config.json
[INFO|modeling_utils.py:1762] 2023-05-12 16:12:38,339 >> Model weights saved in output/checkpoint-150/pytorch_model.bin
[INFO|tokenization_utils_base.py:2163] 2023-05-12 16:12:38,340 >> tokenizer config file saved in output/checkpoint-150/tokenizer_config.json
[INFO|tokenization_utils_base.py:2170] 2023-05-12 16:12:38,340 >> Special tokens file saved in output/checkpoint-150/special_tokens_map.json
{'loss': 3.4522, 'learning_rate': 0.006, 'epoch': 0.0}
{'loss': 3.4131, 'learning_rate': 0.00575, 'epoch': 0.0}
{'loss': 3.4352, 'learning_rate': 0.0055000000000000005, 'epoch': 0.0}
45%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▉ | 180/400 [2:59:40<3:38:47, 59.67s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:457] 2023-05-12 16:42:32,948 >> Configuration saved in output/checkpoint-180/config.json
[INFO|configuration_utils.py:362] 2023-05-12 16:42:32,951 >> Configuration saved in output/checkpoint-180/generation_config.json
[INFO|modeling_utils.py:1762] 2023-05-12 16:42:33,058 >> Model weights saved in output/checkpoint-180/pytorch_model.bin
[INFO|tokenization_utils_base.py:2163] 2023-05-12 16:42:33,059 >> tokenizer config file saved in output/checkpoint-180/tokenizer_config.json
[INFO|tokenization_utils_base.py:2170] 2023-05-12 16:42:33,059 >> Special tokens file saved in output/checkpoint-180/special_tokens_map.json
{'loss': 3.4539, 'learning_rate': 0.00525, 'epoch': 0.0}
{'loss': 3.4935, 'learning_rate': 0.005, 'epoch': 0.0}
{'loss': 3.5829, 'learning_rate': 0.00475, 'epoch': 0.0}
52%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 210/400 [3:29:37<3:08:58, 59.68s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:457] 2023-05-12 17:12:29,360 >> Configuration saved in output/checkpoint-210/config.json
[INFO|configuration_utils.py:362] 2023-05-12 17:12:29,363 >> Configuration saved in output/checkpoint-210/generation_config.json
[INFO|modeling_utils.py:1762] 2023-05-12 17:12:29,473 >> Model weights saved in output/checkpoint-210/pytorch_model.bin
[INFO|tokenization_utils_base.py:2163] 2023-05-12 17:12:29,474 >> tokenizer config file saved in output/checkpoint-210/tokenizer_config.json
[INFO|tokenization_utils_base.py:2170] 2023-05-12 17:12:29,474 >> Special tokens file saved in output/checkpoint-210/special_tokens_map.json
{'loss': 3.5376, 'learning_rate': 0.0045000000000000005, 'epoch': 0.0}
{'loss': 3.4128, 'learning_rate': 0.00425, 'epoch': 0.0}
{'loss': 3.4999, 'learning_rate': 0.004, 'epoch': 0.0}
60%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 240/400 [3:59:27<2:39:04, 59.65s/it]Saving PrefixEncoder
[INFO|configuration_utils.py:457] 2023-05-12 17:42:19,210 >> Configuration saved in output/checkpoint-240/config.json
[INFO|configuration_utils.py:362] 2023-05-12 17:42:19,213 >> Configuration saved in output/checkpoint-240/generation_config.json
[INFO|modeling_utils.py:1762] 2023-05-12 17:42:19,323 >> Model weights saved in output/checkpoint-240/pytorch_model.bin
[INFO|tokenization_utils_base.py:2163] 2023-05-12 17:42:19,324 >> tokenizer config file saved in output/checkpoint-240/tokenizer_config.json
[INFO|tokenization_utils_base.py:2170] 2023-05-12 17:42:19,324 >> Special tokens file saved in output/checkpoint-240/special_tokens_map.json
62%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▍
import os import torch from transformers import AutoConfig, AutoModel, AutoTokenizer CHECKPOINT_PATH = "./output/checkpoint-2010" tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128) model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True).cuda() prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin")) new_prefix_state_dict = {} for k, v in prefix_state_dict.items(): if k.startswith("transformer.prefix_encoder."): new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
print(f"Quantized to 4 bit") model = model.quantize(4) model = model.half().cuda() model.transformer.prefix_encoder.float() model = model.eval() response, history = model.chat(tokenizer, "就是发烧,昨天晚上39度 刘大夫,病人年龄是九岁,这上边改不了", history=[]) print("ChatGLM-6B:\n",response)
最后 发现并没有使用我的数据来回答,不道怎么回事?