[THUDM/ChatGLM-6B]五万训练数据,lora微调 batchsize为2 目前跑了一个epoch,loss还是停留在2.0附近,没有下降正常吗

2024-05-10 50 views
1

如何让loss下降到0.x ?

Steps To Reproduce

_n_gpu=1, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, bf16=False, bf16_full_eval=False, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=0, dataloader_pin_memory=True, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=None, disable_tqdm=False, do_eval=False, do_predict=False, do_train=False, eval_accumulation_steps=None, eval_delay=0, eval_steps=None, evaluation_strategy=no, fp16=True, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, fsdp=[], fsdp_config={'fsdp_min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=False, greater_is_better=None, group_by_length=False, half_precision_backend=auto, hub_model_id=None, hub_private_repo=False, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_inputs_for_metrics=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=0.0005, length_column_name=length, load_best_model_at_end=False, local_rank=-1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=output/nlpcc/runs/Jun02_07-21-04_I12f65b89a300f01054, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=10, logging_strategy=steps, lr_scheduler_type=linear, max_grad_norm=1.0, max_steps=50000, metric_for_best_model=None, mp_parameters=, no_cuda=False, num_train_epochs=3.0, optim=adamw_hf, optim_args=None, output_dir=output/nlpcc, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=2, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, ray_scope=last, remove_unused_columns=False, report_to=['tensorboard'], resume_from_checkpoint=None, run_name=output/nlpcc, save_on_each_node=False, save_steps=500, save_strategy=steps, save_total_limit=2, seed=42, sharded_ddp=[], skip_memory_metrics=True, tf32=None, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_ipex=False, use_legacy_prediction_loop=False, use_mps_device=False, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.0, xpu_backend=None,

Environment
- OS:
- Python:
- Transformers:
- PyTorch:
- CUDA Support (`python -c "import torch; print(torch.cuda.is_available())"`) :

回答

8

我用的lora ,训练集较小 600条测试,很快loss就到0.01, 是不是越小越好?

6

我用的lora ,训练集较小 600条测试,很快loss就到0.01, 是不是越小越好?

是不是过拟合了?我的数据平均长度1000token 拟合不了

1

我内存不够,长度太长OOM了,等新设备中

2

请问你用的哪个微调代码?

5

1、batch太小了感觉是?5w条数据5w steps的话应该不太够,epoch才为2? 试试增大batchsize? 2、也可以试试tensorboard看下loss的图 3、增大lr,先放到5e^-3看看能不能收敛?能收敛再慢慢调小lr